PREDIKSI PEMAKAIAN AIR BULANAN DI PDAM KECAMATAN TAMALATE MENGGUNAKAN METODE AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA)

##plugins.themes.academic_pro.article.main##

Nur Annisa Syarifuddin
Titin Wahyuni
Muhammad Faisal
Muhammad Syafaat
Andi Makbul Syamsuri
Muhyiddin AM Hayat
Andi Lukman Anas

Abstract

Water consumption forecasting is a crucial aspect of efficient water resource management, particularly in urban areas with increasing demand. This study aims to predict the monthly water usage volume at the PDAM of Tamalate District using the Autoregressive Integrated Moving Average (ARIMA) method. The dataset consists of historical water usage data from January 2022 to December 2024, totaling 36 monthly observations. The analysis process includes stationarity testing using the Augmented Dickey-Fuller (ADF) test, model parameter identification through ACF and PACF plots, and performance evaluation using MAE, RMSE, and MAPE metrics. The results show that the best-performing model is ARIMA, which demonstrates high prediction accuracy, with a MAE of 26,049.80 m³, RMSE of 37,459.00 m³, and MAPE of 4.12%. This model is capable of generating predictions close to actual values and can be relied upon as a basis for PDAM’s water distribution planning. It is expected that this research will contribute to data-driven decision-making and support digital transformation in the public service sector.

##plugins.themes.academic_pro.article.details##

How to Cite
Syarifuddin, N. A., Wahyuni, T., Faisal, M., Syafaat, M., Syamsuri, A. M., AM Hayat, M., & Anas, A. L. (2025). PREDIKSI PEMAKAIAN AIR BULANAN DI PDAM KECAMATAN TAMALATE MENGGUNAKAN METODE AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA). Jurnal Informatika Progres, 17(2), 44-53. https://doi.org/10.56708/progres.v17i2.471

References

[1] G. L. Stephens et al., “Earth’s water reservoirs in a changing climate,” Proc. R. Soc. A Math. Phys. Eng. Sci., vol. 476, no. 2236, 2020, doi: 10.1098/rspa.2019.0458.
[2] R. Nuryaumil, “985 | Page,” vol. 2, pp. 985–995, 2024.
[3] D. Arinta, F. Rosyida, M. Arif, and S. Suyadi, “Forecasting Kebutuhan Air Beserta Nilai Ekonomis Air di Kota Malang Tahun 2023-2027,” J. MIPA dan …, vol. 3, no. 1, pp. 45–55, 2023, doi: 10.17977/um067v3i1p45-55.
[4] Adwait and T. Roshni, “Mean sea level modelling using the neural network along the Chennai coast,” J. Water Clim. Chang., vol. 14, no. 1, pp. 66–82, 2023, doi: 10.2166/wcc.2022.187.
[5] M. Kowsigan, “International Journal of INTELLIGENT SYSTEMS AND APPLICATIONS IN ENGINEERING Enhanced ARIMA Model for Water Demand Forecasting in Smart Water Distribution Network,” Orig. Res. Pap. Int. J. Intell. Syst. Appl. Eng. IJISAE, vol. 2023, no. 3, pp. 598–610, 2023, [Online]. Available: www.ijisae.org
[6] A. James and V. Tripathi, “Time series data analysis and ARIMA modeling to forecast the short-term trajectory of the acceleration of fatalities in Brazil caused by the corona virus (COVID-19),” PeerJ, vol. 9, 2021, doi: 10.7717/peerj.11748.
[7] S. Defiyanti et al., “OPTIMASI PERTANIAN PADI : PERAMALAN CURAH HUJAN BERBASIS ARIMA RICE FARMING OPTIMIZATION : ARIMA-BASED RAINFALL FORECASTING FOR,” vol. 11, no. 6, pp. 1377–1384, 2024, doi: 10.25126/jtiik.2024118682.
[8] A. T. Nurani, A. Setiawan, and B. Susanto, “Perbandingan Kinerja Regresi Decision Tree dan Regresi Linear Berganda untuk Prediksi BMI pada Dataset Asthma,” J. Sains dan Edukasi Sains, vol. 6, no. 1, pp. 34–43, 2023, doi: 10.24246/juses.v6i1p34-43.
[9] Tita Lattifia, Putu Wira Buana, and NI Kadek Dwi Rusjayanthi, “Model Prediksi Cuaca Menggunakan Metode LSTM,” JITTER-Jurnal Ilm. Teknol. dan Komput., vol. 3, no. 1, 2022.
[10] N. Almumtazah, N. Azizah, Y. L. Putri, and D. C. R. Novitasari, “Prediksi Jumlah Mahasiswa Baru Menggunakan Metode Regresi Linier Sederhana,” J. Ilm. Mat. Dan Terap., vol. 18, no. 1, pp. 31–40, 2021, doi: 10.22487/2540766x.2021.v18.i1.15465.
[11] S. Adiguno, Y. Syahra, and M. Yetri, “Prediksi Peningkatan Omset Penjualan Menggunakan Metode Regresi Linier Berganda,” J. Sist. Inf. Triguna Dharma (JURSI TGD), vol. 1, no. 4, p. 275, 2022, doi: 10.53513/jursi.v1i4.5331.
[12] Erdin, “Peramalan Jumlah Penyediaan Air Bersih Oleh Perusahaan Daerah Air Minum (Pdam) Terhadap Masyarakat Di Kabupaten Gowa Tahun 2020 Dengan Metode Arima,” pp. 1–87, 2020.

Most read articles by the same author(s)