IMPLEMENTASI HYBRID LEXICON-BASED DAN SVM UNTUK KLASIFIKASI ANALISIS SENTIMEN TERHADAP PELATIHAN BBPSDMP KOMINFO MAKASSAR

##plugins.themes.academic_pro.article.main##

Nur Alam
Muhammad Faisal
Rizki Yusliana Bakti
Muhammad Syafaat
Andi Makbul Syamsuri
Muhyiddin AM Hayat
Andi Lukman Anas

Abstract

The evaluation of government training programs is often hindered by manual analysis of unstructured qualitative feedback, making the process inefficient and subjective. This study aims to implement and evaluate a sentiment classification model using a hybrid Lexicon-Based and Support Vector Machine approach to analyze participants’ perceptions of the Vocational School Graduate Academy training organized by BBPSDMP Kominfo Makassar, as well as to compare the performance of a standard SVM model with a model optimized using Particle Swarm Optimization. This quantitative research employs 2,313 unstructured review data, which undergo text preprocessing, initial lexicon-based labeling, and TF-IDF feature extraction before being classified using an SVM with an RBF kernel. The results show that the SVM model optimized with PSO consistently outperforms the standard model across all four evaluation aspects, with the most significant accuracy improvement observed in the instructor category from 84.71% to 89.02% and in the assessor category reaching 91.46%. PSO optimization has proven effective in enhancing the model’s ability to identify negative sentiments, which represent the minority class. The hybrid approach with PSO optimization is capable of producing a more accurate and balanced classification system, with practical implications as an objective automated evaluation tool.

##plugins.themes.academic_pro.article.details##

How to Cite
Alam, N., Faisal, M., Bakti, R. Y., Syafaat, M., Syamsuri, A. M., AM Hayat, M., & Anas, A. L. (2025). IMPLEMENTASI HYBRID LEXICON-BASED DAN SVM UNTUK KLASIFIKASI ANALISIS SENTIMEN TERHADAP PELATIHAN BBPSDMP KOMINFO MAKASSAR. Jurnal Informatika Progres, 17(2), 54-62. https://doi.org/10.56708/progres.v17i2.473

References

[1] Kementerian Komunikasi dan Informatika Republik Indonesia. (2021). Peluncuran program literasi digital nasional. Badan Pengembangan SDM Kominfo. https://bpsdm.komdigi.go.id/berita-peluncuran-program-literasi-digital-nasional-44-777

[2] Syahputra, H. (2021). Sentiment analysis of community opinion on online store in Indonesia on Twitter using support vector machine algorithm (SVM). Journal of Physics: Conference Series, 1819(1), 012030. https://doi.org/10.1088/1742-6596/1819/1/012030

[3] Nurmalasari, D., Hidayatul, D., Authors, Q., Chairani, N., & Yuliantoro, H. R. (2024). Discovering user sentiment patterns in libraries with a hybrid machine learning and lexicon-based approach. International Journal (Vol. 13, pp. 311–317).

[4] Savira, R., Solichin, A., & Syafrullah, M. (2023). Analisis sentimen pada Twitter terhadap kenaikan BBM 2022 dengan Lexicon dan support vector machine. Prosiding Seminar Nasional Mahasiswa Fakultas Teknologi Informasi (SENAFTI), 2(1), 211–218. https://senafti.budiluhur.ac.id/index.php/senafti/article/view/564

[5] Pratama, M. R., Ramadhan, Y. R., & Komara, M. A. (2023). Analisis sentimen BRImo dan BCA mobile menggunakan support vector machine dan lexicon based. JUTISI: Jurnal Ilmiah Teknik Informatika dan Sistem Informasi, 12(3), 1439–1450.

[6] Al-Khowarizmi, I. P., Sari, S., & Maulana, H. (2023). Detecting cyberbullying on social media using support vector machine: A case study on Twitter. International Journal of Safety and Security Engineering, 13(4), 709–714. https://doi.org/10.18280/ijsse.130413

[7] Ulya, D. I., Kunaefi, A., Rolliawati, D., & Nugroho, B. A. (2023). Unpacking public perceptions of QRIS with Twitter data: A VADER and LDA methodology. Jurnal ELTIKOM, 7(2), 145–159. https://doi.org/10.31961/eltikom.v7i2.742

[8] Ependi, U., & Ahmad, N. A. (2024). A novel hybrid classification on urban opinion using ROS-RF: A machine learning approach. Jurnal Penelitian Pendidikan IPA, 10(8), 5816–5824. https://doi.org/10.29303/jppipa.v10i8.8042

[9] Kristiyanti, D. A., & Hardani, S. (2023). Sentiment analysis of public acceptance of Covid-19 vaccines types in Indonesia using naïve Bayes, support vector machine, and long short-term memory (LSTM). Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), 7(3), 722–732. https://doi.org/10.29207/resti.v7i3.4737

[10] Muttakin, F., & Andrika, N. (2025). Sentiment analysis of shoe product reviews on Indonesian e-commerce platform using lexicon based and support vector machine. International Journal (Vol. 6, No. 2, pp. 839–854).

[11] Artana, I. K. A. B., Pradnyana, G. A., & Darmawiguna, I. G. M. (2023). Analisis sentimen Twitter untuk menilai kesiapan pembelajaran tatap muka terbatas dengan InSet lexicon dan Levenshtein distance. Jurnal Pendidikan Teknologi dan Kejuruan, 20(2), 200–209. https://doi.org/10.23887/jptkundiksha.v20i2.64579

[12] Arifin, N., Enri, U., & Sulistiyowati, N. (2021). Penerapan algoritma support vector machine (SVM) dengan TF-IDF N-Gram untuk text classification. STRING (Satuan Tulisan Riset dan Inovasi Teknologi), 6(2), 129. https://doi.org/10.30998/string.v6i2.10133

[13] Nauli, S., Berutu, S. S., Budiati, H., & Maedjaja, F. (2025). Klasifikasi kalimat perundungan pada Twitter menggunakan algoritma support vector machine. JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika), 10(1), 107–122. https://doi.org/10.29100/jipi.v10i1.5749

[14] Darmawan, R., Indra, I., & Surahmat, A. (2022). Optimalisasi support vector machine (SVM) berbasis particle swarm optimization (PSO) pada analisis sentimen terhadap official account Ruang Guru di Twitter. Jurnal Kajian Ilmiah, 22(2), 143–152. https://doi.org/10.31599/jki.v22i2.1130

[15] Risawati, R., Ernawati, S., & Maryani, I. (2020). Optimasi parameter PSO berbasis SVM untuk analisis sentimen review jasa maskapai penerbangan berbahasa Inggris. EVOLUSI: Jurnal Sains dan Manajemen, 8(2), 64–71. https://doi.org/10.31294/evolusi.v8i2.9248

[16] Muhammadi, R. H., Laksana, T. G., & Arifa, A. B. (2022). Combination of support vector machine and lexicon-based algorithm in Twitter sentiment analysis. Khazanah Informatika: Jurnal Ilmu Komputer dan Informatika, 8(1), 59–71. https://doi.org/10.23917/khif.v8i1.15213

[17] Alfauzan, M. F., Sibaroni, Y., & Fitriyani, F. (2023). Sentiment classification of fuel price rise in economic aspects using lexicon and SVM method. Sinkron, 8(4), 2526–2536. https://doi.org/10.33395/sinkron.v8i4.12851

[18] Oktaviana, N. E., Sari, Y. A., & Indriati, I. (2022). Analisis sentimen terhadap kebijakan kuliah daring selama pandemi menggunakan pendekatan lexicon based features dan support vector machine. Jurnal Teknologi Informasi dan Ilmu Komputer, 9(2), 357–362. https://doi.org/10.25126/jtiik.2022925625

Most read articles by the same author(s)