PENERAPAN ALGORITMA K-NEAREST NEIGHBOR DALAM ANALISIS PEMINJAMAN BARANG PADA DIVISI INVENTARIS TVRI MAKASSAR
##plugins.themes.academic_pro.article.main##
Abstract
Inventory management in the TVRI Makassar Inventory Division is inefficient due to the lack of a predictive system, hampering proactive asset requirement planning. This study aims to apply the K-Nearest Neighbor (KNN) algorithm to analyze historical borrowing patterns, predict demand for goods three months in advance, and evaluate model accuracy. Using a quantitative approach, this study implements a systematic machine learning workflow, including data preprocessing, temporal feature engineering, class imbalance handling using the Synthetic Minority Over-sampling Technique (SMOTE), and hyperparameter optimization using GridSearchCV. The results show that the optimized KNN model achieved an overall accuracy of 80.18%, significantly outperforming the baseline model. Key findings revealed that the model's performance is contextual, with very high reliability (F1-Score > 0.95) on frequently borrowed assets, and is able to identify strong temporal demand patterns. It is concluded that KNN is effective for segmented inventory demand prediction and has the potential to serve as a basis for TVRI Makassar to adopt a proactive, data-driven inventory management strategy, enabling more efficient resource allocation.
##plugins.themes.academic_pro.article.details##

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
[2] Pranoto, A. O., & Sediyono, E. (2021). Perancangan sistem informasi inventaris barang berbasis web. Jurnal Teknik Informatika dan Sistem Informasi (JUTISI), 7(2). https://doi.org/10.28932/jutisi.v7i2.3597
[3] Hijrah, & Maulidar. (2021). Analisis dan perancangan sistem manajemen inventaris menggunakan metode Fishbone. Jurnal Teknologi dan Manajemen Informatika (JTMI), 7(2), 95–102. Retrieved from http://jurnal.unmer.ac.id/index.php/jtmi
[4] Hastriyandi, H., Wahyuni, S., & Syahnaz, E. (2023). Sistem informasi pengelolaan aset barang dan peminjaman peralatan pada laboratorium dan bengkel Politeknik Negeri Sambas berbasis web. PATANI, 6(1), 38–44.
[5] Jollyta, D., & Ramdhan, W. (2020). Konsep data mining dan penerapan. Deepublish.
[6] Zhang, S. (2022). Challenges in KNN classification. IEEE Transactions on Knowledge and Data Engineering, 34(10), 4663–4675. https://doi.org/10.1109/TKDE.2021.3049250
[7] Hasanah, F., Suprapti, T., Rahaningsih, N., & Ali, I. (2022). Implementasi algoritma K-Nearest Neighbor dalam menentukan buku berdasarkan peminatan. Jurnal Accounting Information System (AIMS), 5(1), 102–111. https://doi.org/10.32627
[8] Dewi, S. P., Nurwati, N., & Rahayu, E. (2022). Penerapan data mining untuk prediksi penjualan produk terlaris menggunakan metode K-Nearest Neighbor. Building of Informatics, Technology and Science (BITS), 3(4), 639–648. https://doi.org/10.47065/bits.v3i4.1408
[9] Ardhana, S. R., Widiharih, T., & Saputra, B. A. (2024). Klasifikasi menggunakan algoritma K-Nearest Neighbor pada imbalance class data dengan SMOTE (Studi kasus: Nasabah Bank Perkreditan Rakyat ‘X’). Indonesian Journal of Applied Statistics, 6(2), 152. https://doi.org/10.13057/ijas.v6i2.79389
[10] Salih, A. A., & Abdulazeez, A. M. (2021). Evaluation of classification algorithms for intrusion detection system: A review. Journal of Soft Computing and Data Mining, 2(1), 31–40. https://doi.org/10.30880/jscdm.2021.02.01.004
[11] Prihatmono, M. W. ., Arni, S., Iin, J. N. ., & Moeis, D. (2022). Application of the KNN Algorithm for Predicting Data Card Sales at PT. XL Axiata Makassar. Conference Series, 4(1), 59–64. https://doi.org/10.34306/conferenceseries.v4i1.692